Smart Aquaculture Model for the Empowerment of Fisheries Micro, Small, and Medium Enterprises (MSMEs) through Digitalized Fish Farming Using an Automatic Feeding System

  • Dian Resha Agustina Universitas Bandar Lampung
  • Defrizal Defrizal Universitas Bandar Lampung
  • Sony Tian Dhora Universitas Bandar Lampung
  • Mas Syntha Azzahra Sugandi Universitas Bandar Lampung
  • A. Herbantolo Nurendro Kushariantoko Universitas Bandar Lampung
  • M. Rafli Purmadya Universitas Bandar Lampung
  • Muhammad Bintang Syahputra Universitas Bandar Lampung
Keywords: Automatic Fish Feeder, ESP8266, DC Motor, Adafruit

Abstract

Ornamental fish have become a popular hobby, offering beauty and tranquility to many homes. However, maintaining consistent feeding remains a challenge that often leads to malnutrition, stunted growth, and poor water quality due to overfeeding. This study aims to address these issues by developing an automatic fish feeding system integrated with Internet of Things (IoT) technology. The system employs an LDR sensor, DC motor, and NodeMCU ESP8266 microcontroller, enabling remote control and real-time monitoring through a mobile application connected to the Adafruit IO cloud. Using the experimental method, the system was tested for accuracy, connectivity, and feed timing performance. The results showed consistent feeding with an average delay of only three minutes, ensuring operational reliability. This research not only provides a practical solution for fish keepers but also supports digital empowerment for small-scale aquaculture businesses through the adoption of smart IoT systems.

Downloads

Download data is not yet available.

References

Abdullah, A. F., Man, H. C., Mohammed, A., Karim, M. M. A., Yunusa, S. U., & Jais, N. A. B. M. (2024). Charting the Aquaculture Internet of Things Impact: Key Applications, Challenges, and Future Trend. Aquaculture Reports, 39(November 2023), 102358. https://doi.org/10.1016/j.aqrep.2024.102358

Davis, Fred D. 1989. “Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology.” MIS Quarterly 13 (3): 319–340.

Flores-Iwasaki, M., Guadalupe, G. A., Pachas-Caycho, M., Chapa-Gonza, S., Mori-Zabarburú, R. C., & Guerrero-Abad, J. C. (2025). Internet of Things (IoT) Sensors for Water Quality Monitoring in Aquaculture Systems: A Systematic Review and Bibliometric Analysis. AgriEngineering, 7(3), 1–28. https://doi.org/10.3390/agriengineering7030078

Indrawati, E. M., Suprianto, B., & Kartini, U. T. (2025). Development of Fuzzy Logic Automatic Fish Feeding System and Iot-based Water Quality Control. Journal of Engineering Research and Reports, 27(3), 56–69. https://doi.org/10.9734/jerr/2025/v27i31417

Marlianingrum, P. R., Suhana, & Suprapta, I. (2022). Ornamental fish export during the Covid-19 pandemic. AACL Bioflux, 15(6), 2999–3011.

Megantoro, P., Anugrah, A. W., Abdillah, M. H., Kustanto, B. J., Fadillah, M., & Vigneshwaran, P. (2024). Smart Measurement and Monitoring System for Aquaculture Fisheries with IoT-Based Telemetry System. Bulletin of Electrical Engineering and Informatics, 13(3), 1555–1565. https://doi.org/10.11591/eei.v13i3.6900

Mohamed, A. A., Muhammad, N. A. B., Rashid, R. A., Ahmed, M. M., Ali, A. A., & Abdikadir, N. M. (2024). IOT-based Automatic Fish Feeding System. 2024 IEEE 22nd Student Conference on Research and Development, SCOReD 2024, February 2025, 333–338. https://doi.org/10.1109/SCOReD64708.2024.10872688

Mohd Jais, N. A., Abdullah, A. F., Mohd Kassim, M. S., Abd Karim, M. M., M, A., & Muhadi, N. ‘Atirah. (2024). Improved Accuracy in IoT-Based Water Quality Monitoring for Aquaculture Tanks Using Low-Cost Sensors: Asian Seabass Fish Farming. Heliyon, 10(8), e29022. https://doi.org/10.1016/j.heliyon.2024.e29022

Olanubi, O. O., Akano, T. T., & Asaolu, O. S. (2024). Design and Development of An IoT-Based Intelligent Water Quality Management System for Aquaculture. Journal of Electrical Systems and Information Technology, 11(1). https://doi.org/10.1186/s43067-024-00139-z

P, A., N, M., H, S., & B, J. (2024). IoT based Smart Aquaculture Monitoring System for Fish Tank Management. Journal of Ubiquitous Computing and Communication Technologies, 6(3), 214–227.

Rastegari, H., Nadi, F., Lam, S. S., Ikhwanuddin, M., Kasan, N. A., Rahmat, R. F., & Mahari, W. A. W. (2023). Internet of Things in Aquaculture: A Review of The Challenges and Potential Solutions Based on Current and Future Trends. Smart Agricultural Technology, 4(December 2022), 100187. https://doi.org/10.1016/j.atech.2023.100187

Rathy, P. A. A., & Jenefer, G. G. (2024). Iot Based Automatic Fish Feeder Using Mobile Application. Futuristic Trends in Artificial Intelligence Volume 3 Book 8, 3, 12–21. https://doi.org/10.58532/v3bgai8p1ch2

Rodríguez, M. C. B., González, C. E. M., Almanza, E. D. C., Rodríguez, C. G., Regino-Vergara, J. Á., & López-Padilla, A. (2025). Benefits and Challenges of The Internet of Things In Aquaculture Production: A Literature Review. Frontiers in Sustainable Food Systems, 9(August), 1–9. https://doi.org/10.3389/fsufs.2025.1590153

Rogers, Everett M. 2003. Diffusion of Innovations. 5th ed. New York: Free Press.

Shete, R. P., Bongale, A. M., & Dharrao, D. (2024). IoT-Enabled Effective Real-Time Water Quality Monitoring Method for Aquaculture. MethodsX, 13(July). https://doi.org/10.1016/j.mex.2024.102906

Silalahi, A. O., Sinambela, A., Panggabean, H. M., & Pardosi, J. T. N. (2023). Smart Automated Fish Feeding Based on Iot System Using Lora Ttgo Sx1276 and Cayenne Platform. EUREKA, Physics and Engineering, 2023(3), 66–79. https://doi.org/10.21303/2461-4262.2023.002745

Sobri, M. A., & Topiq, S. (2024). Automatic Fish Feed Design and IoT Based Monitoring Using NodeMCU ESP8266 Microcontroller. Journal Corner of Education, Linguistics, and Literature, 4(001), 503–514. https://doi.org/10.54012/jcell.v4i001.426

Tarihoran, A. D. B., Hubeis, M., Jahroh, S., & Zulbainarni, N. (2023). Competitiveness of and Barriers to Indonesia’s Exports of Ornamental Fish. Sustainability (Switzerland), 15(11). https://doi.org/10.3390/su15118711

Vo, T. T. E., Ko, H., Huh, J. H., & Kim, Y. (2021). Overview of Smart Aquaculture System: Focusing on Applications of Machine Learning and Computer Vision. Electronics (Switzerland), 10(22), 1–26. https://doi.org/10.3390/electronics10222882

Zuhaer, A., Khandoker, A., Enayet, N., Partha, P. K. P., & Awal, M. A. (2026). Sustainable Aquaculture: An Iot-integrated System for Real-time Water Quality Monitoring Featuring Advanced Do and Ammonia Sensors. Aquacultural Engineering, 112(August 2025), 102620. https://doi.org/10.1016/j.aquaeng.2025.102620

Published
2026-02-01
How to Cite
Agustina, D. R., Defrizal, D., Dhora, S. T., Sugandi, M. S. A., Kushariantoko, A. H. N., Purmadya, M. R., & Syahputra, M. B. (2026). Smart Aquaculture Model for the Empowerment of Fisheries Micro, Small, and Medium Enterprises (MSMEs) through Digitalized Fish Farming Using an Automatic Feeding System. Engagement: Jurnal Pengabdian Kepada Masyarakat, 10(1). https://doi.org/10.29062/engagement.v10i1.2223